基于以下代码框架实现knn核心算法,并对鸢尾花数据集进行分类。要求:不能调用sklearn中现成的knn,其他的包都可以用。 from collections import counter


以下是为您编写的 KNN 核心算法代码,用于对鸢尾花数据集进行分类: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 计算两个样本之间的欧氏距离 def euclidean_distance(x1, x2): """ 计算两个样本点之间的欧氏距离 :param x1: 样本 1 :param x2: 样本 2 :return: 欧氏距离 """ return np.sqrt(np.sum((x1 - x2) ** 2)) # KNN 分类器 class KNN: def __init__(self, k=5): """ 初始化 KNN 分类器 :param k: 近邻数量 """ self.k = k def fit(self, X, y): """ 训练模型 :param X: 特征矩阵 :param y: 标签向量 """ self.X_train = X self.y_train = y def predict(self, X_test): """ 预测标签 :param X_test: 测试集特征矩阵 :return: 预测标签 """ predictions = [] for test_sample in X_test: distances = [euclidean_distance(test_sample, x_train_sample) for x_train_sample in self.X_train] k_indices = np.argsort(distances)[:self.k] k_nearest_labels = [self.y_train[i] for i in k_indices] most_common = counter(k_nearest_labels).most_common(1)[0][0] predictions.append(most_common) return np.array(predictions) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建 KNN 分类器对象并训练 knn = KNN(k=3) knn.fit(X_train, y_train) # 进行预测 y_pred = knn.predict(X_test) # 计算准确率 accuracy = np.sum(y_pred == y_test) / len(y_test) print("准确率:", accuracy) ``` 额外需要注意的逻辑点: 1. 数据预处理,比如对数据进行标准化或归一化处理,可能会提高模型的性能。 2. 调整 K 值,通过交叉验证等方法找到最优的 K 值。 3. 考虑对距离计算进行优化,提高算法效率。 [2024-11-19 23:05:12 | AI写代码神器 | 603点数解答]
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)295
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)138
- from kivy.app import app from kivy.uix.button import button from kivy.uix.boxlayout import boxlayout from kivy.uix.filechooser import filechooserlistview from kivy.uix.popup import popup from kivy.uix.label import label from kivy.uix.screenmanager import screenmanager, screen from kivy.core.window import window from kivy.uix.treeview import treeview, treeviewlabel from unitypy import assetsmanager from unitypy.exceptions import unitypyerror import os from pil import image import time class file(262点数解答 | 2024-12-01 17:07:07)194
- package com.example.weather; import android.content.context; import android.media.mediaplayer; import android.net.uri; import android.os.bundle; import android.util.log; import android.view.layoutinflater; import android.view.view; import android.view.viewgroup; import android.webkit.websettings; import android.webkit.webview; import android.webkit.webviewclient; import android.widget.videoview; import androidx.fragment.app.fragment; public class realtimemonitoringfragment extends fragment {(30点数解答 | 2024-10-12 10:31:18)199
- package com.example.weather; import android.content.context; import android.media.mediaplayer; import android.net.uri; import android.os.bundle; import android.util.log; import android.view.layoutinflater; import android.view.view; import android.view.viewgroup; import android.webkit.websettings; import android.webkit.webview; import android.webkit.webviewclient; import android.widget.videoview; import androidx.fragment.app.fragment; public class realtimemonitoringfragment extends fragment {(531点数解答 | 2024-10-12 10:32:25)183
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)90
- A. 实验内容:用 NumPy 生成一组线性数据加点噪声训练线性回归模型画图观察模型的拟合效果。 任务: (1) 模拟线性数据(带噪声):y = 5x + 噪声(均值20, 标准差10),构成比较真实的线性关系数据。 (2) 数据划分:使用 train_test_split 划分训练集和测试集。 (3) 模型训练与预测:通过 LinearRegression() 拟合模型并进行预测。 (4) 模型评估:使用均方误差(MSE)、均方根误差(RMSE)、R²决定系数来评价模型。 (5)结果可视化:使用散点图和预测回归线展示模型效果。 B. 实验步骤: (1)导入scikit-learn库,并使用 NumPy 生成x自变量数据 from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error,r2_score import numpy as np (651点数解答 | 2025-06-12 13:18:59)64
- 背景:某医院收集了一组关于患者健康状况的数据集,其中包含患者的年龄(age)、体重(weight)、血压(bp)和胆固醇水平(cholesterol)。 研究员希望使用线性回归模型预测胆固醇水平。 数据文件名为:health_data.csv,包含字段如下: age, weight, bp, cholesterol 请根据以下Python代码,完成相应的填空,使其能成功实现以下功能: (1)导入所需的库,并加载数据; (2)使用age、weight和bp预测cholesterol; (3)将数据集的 20% 用作测试集; (4)构建并训练线性回归模型; (5)对测试集进行预测; (6)输出模型评估结果; (7)绘制预测值与实际值的对比图。 import pandas as pd from sklearn.linear_model import ______ #填空(1) from sklearn.model_selection import ______ #填空(2) from sklearn.metrics import (404点数解答 | 2025-06-29 17:53:11)47
- import numpy as np import matplotlib.pyplot as plt from scipy.stats import chi2 import pandas as pd import itertools from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.impute import SimpleImputer # 用于简单缺失值填充 import plotly.graph_objects as go from plotly.subplots import make_subplots plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 问题背景与意义说明 # 在生产过程中,产品可能会出现多种类型的缺陷,通过对不同缺陷类型的频数分布进行监控, # 可以及时发(925点数解答 | 2025-04-05 17:47:55)111
- <!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>音乐榜单</title> <style> ol{ list-style-type: none; counter-reset: mycounter; padding-left: 0; } ol li{ position: relative; counter-reset: mycounter; padding-left: 30px; } ol li::before{ content: counter(mycounter); position :absolute; left:0; width:15px; height:15px;(580点数解答 | 2024-10-24 18:23:33)193
- 如何用aide编写的xposed软件拦截一个smail类里面的方法名,请参考如下代码进行修改达到效果 import android.content.*; import android.graphics.*; import android.os.*; import android.widget.*; import de.robv.android.xposed.*; import de.robv.android.xposed.callbacks.*; import java.util.*; import android.app.*; /* 注意:该类不要自己写构造方法,否者可能会hook不成功 * 开发xposed模块完成以后,关闭bebug以提升性能 * debug模式只需要第一次重启,以后修改hook代码就不用重启了 */ public class xposed implements ixposedhookloadpackage { public static activity 上下文; @override public void handleloadpackage(x(649点数解答 | 2024-10-12 00:15:48)195
- python代码转c代码 # -*- coding: utf-8 -*- import os.path import dpkt import time import cmath import matplotlib.pyplot as plt import torch from scipy.io import savemat import numpy as np def read_pcap(file_path): list_stamp = [] list_packet = [] # 打开pcap文件 with open(file_path, 'rb') as f: pcap = dpkt.pcap.reader(f) for timestamp, packet in pcap: hex_str = ''.join(f'{c:02x}' for c in packet) # 二进制转为16进制 list_stamp.append(timestamp)(486点数解答 | 2024-10-29 15:57:32)177