用openpyxl库 读取excel文件第一页,第二列数据,写入excel文件中第三页,第二列,最后一行,语言方向:Python,系统环境:Linux


```python from openpyxl import load_workbook, Workbook def transfer_data(file_path): # 加载源文件 wb_source = load_workbook(file_path) # 获取第一页 sheet1 = wb_source.worksheets[0] # 获取第一页第二列数据 data = [cell.value for cell in sheet1['B']] # 新建一个工作簿 wb_dest = Workbook() # 获取第三页 sheet3 = wb_dest.create_sheet(title='Sheet3') # 找到第三页第二列的最后一行 last_row = len(sheet3['B']) + 1 # 将数据写入第三页第二列的最后一行 for value in data: sheet3.cell(row=last_row, column=2, value=value) last_row += 1 # 保存新工作簿 wb_dest.save('new_file.xlsx') transfer_data('your_file.xlsx') ``` 额外注意的逻辑点: 1. 确保提供的文件路径是正确的,否则会读取失败。 2. 注意源文件中第二列的数据格式,可能需要进行适当的转换。 3. 如果写入的数据量很大,可能需要考虑性能优化,例如分批写入。 [2024-12-31 17:06:41 | AI写代码神器 | 293点数解答]
- import win32com.client import os def excel_to_pdf(input_file, output_file): # 确保输入文件存在 if not os.path.exists(input_file): raise FileNotFoundError(f"文件 {input_file} 不存在") # 创建 Excel 应用程序实例 excel = win32com.client.Dispatch("Excel.Application") excel.Visible = False # 不显示 Excel 窗口 try: # 打开 Excel 文件 wb = excel.Workbooks.Open(input_file) # 设置页面布局为 A4 横向 for ws in wb.Worksheets: ws.PageSetup.Orientation = 2 # 2 表示横向 (507点数解答 | 2025-03-10 15:48:12)156
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 如: 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt中的行 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后为 1:l p[54(811点数解答 | 2024-12-05 12:58:37)222
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt数据 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后数据 1:l p[54:a1(531点数解答 | 2024-12-05 13:20:42)229
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt数据 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后数据 1:l p[54:a1(495点数解答 | 2024-12-05 13:22:26)201
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)144
- c:\python\venv\zzz\scripts\python.exe c:\python\main.py traceback (most recent call last): file "c:\users\意\appdata\local\programs\python\python311\lib\site-packages\urllib3\connection.py", line 199, in _new_conn sock = connection.create_connection( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ file "c:\users\意\appdata\local\programs\python\python311\lib\site-packages\urllib3\util\connection.py", line 85, in create_connection raise err file "c:\users\意\appdata\local\programs\python\pyt(161点数解答 | 2024-10-31 00:39:36)247
- java调用python接口使用的string pythonscriptpathpng = "ruoyi-edu\\src\\main\\java\\com\\gtvote\\edu\\python\\pptutils.py"; processbuilder pbpng = new processbuilder("python", pythonscriptpathpng, pptfilepath, "png"); process ppng = pbpng.start(); // 读取 python 脚本写入的文件 bufferedreader reader = new bufferedreader(new filereader("count.txt")); ppng.waitfor(); 传入的中文是乱码(160点数解答 | 2024-06-06 17:18:39)267
- java调用python接口使用的 string pythonscriptpathpng = "ruoyi-edu\\src\\main\\java\\com\\gtvote\\edu\\python\\pptutils.py"; processbuilder pbpng = new processbuilder("python", pythonscriptpathpng, pptfilepath, "png"); process ppng = pbpng.start(); // 读取 python 脚本写入的文件 bufferedreader reader = new bufferedreader(new filereader("count.txt")); ppng.waitfor(); 传入的中文变成了乱码(344点数解答 | 2024-06-06 17:19:55)380
- java调用python接口使用的 string pythonscriptpathpng = "ruoyi-edu\\src\\main\\java\\com\\gtvote\\edu\\python\\pptutils.py"; processbuilder pbpng = new processbuilder("python", pythonscriptpathpng, pptfilepath, "png"); process ppng = pbpng.start(); // 读取 python 脚本写入的文件 bufferedreader reader = new bufferedreader(new filereader("count.txt")); ppng.waitfor(); java传入的中文值变成了乱码(264点数解答 | 2024-06-06 17:27:09)241
- [ { "id": 1, "parentId": 0, "spread": true, "title": "数据", "path": "", "status": 1, "sort": 1, "parentTitle": null, "children": [ { "id": 2, "parentId": 1, "spread": false, "title": "项目-知识库", "path": "/cms/data/questionprolist.html", "status": 1, "sort": 2, "parentTitle": "数据", (603点数解答 | 2025-04-15 22:48:51)107
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(506点数解答 | 2025-03-23 14:32:14)177
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(116点数解答 | 2025-03-26 22:22:15)206