酷代码 AI
菜单
全部AI  /  热门  /  AI写代码神器
服务商

请用C语言写一份完整的Savitzky-Golay filter算法

以下是一个完整的C语言实现Savitzky-Golay滤波器的代码示例。该实现包含多项式拟合和卷积计算的核心逻辑: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> // 计算Savitzky-Golay滤波器系数 void sg_filter_coeff(int window_size, int poly_order, double* coeff) { int m = (window_size - 1) / 2; double A = (double)malloc((poly_order + 1) * sizeof(double*)); for (int i = 0; i <= poly_order; i++) { A[i] = (double*)malloc((poly_order + 1) * sizeof(double)); } double* b = (double*)malloc((poly_order + 1) * sizeof(double)); // 构建设计矩阵A和向量b for (int i = 0; i <= poly_order; i++) { for (int j = 0; j <= poly_order; j++) { A[i][j] = 0.0; for (int k = -m; k <= m; k++) { A[i][j] += pow(k, i + j); } } b[i] = 0.0; for (int k = -m; k <= m; k++) { b[i] += pow(k, i); } } // 高斯消元法求解线性方程组 for (int k = 0; k <= poly_order; k++) { for (int i = k + 1; i <= poly_order; i++) { double factor = A[i][k] / A[k][k]; for (int j = k; j <= poly_order; j++) { A[i][j] -= factor * A[k][j]; } b[i] -= factor * b[k]; } } // 回代求解 for (int i = poly_order; i >= 0; i--) { for (int j = i + 1; j <= poly_order; j++) { b[i] -= A[i][j] * coeff[j]; } coeff[i] = b[i] / A[i][i]; } // 释放内存 for (int i = 0; i <= poly_order; i++) { free(A[i]); } free(A); free(b); } // 应用Savitzky-Golay滤波器 void sg_filter(double* input, double* output, int data_size, int window_size, int poly_order) { int m = (window_size - 1) / 2; double* coeff = (double*)malloc((poly_order + 1) * sizeof(double)); sg_filter_coeff(window_size, poly_order, coeff); for (int i = 0; i < data_size; i++) { output[i] = 0.0; for (int j = -m; j <= m; j++) { int idx = i + j; if (idx < 0) idx = 0; if (idx >= data_size) idx = data_size - 1; double term = 0.0; for (int k = 0; k <= poly_order; k++) { term += coeff[k] * pow(j, k); } output[i] += input[idx] * term; } } free(coeff); } int main() { // 示例数据 double input[] = {1.2, 2.3, 3.1, 4.5, 5.2, 6.7, 7.1, 8.4, 9.2, 10.5}; int data_size = sizeof(input) / sizeof(input[0]); double output[data_size]; // 滤波器参数 int window_size = 5; // 必须为奇数 int poly_order = 2; // 多项式阶数 sg_filter(input, output, data_size, window_size, poly_order); // 打印结果 printf("Original Data:\tFiltered Data:\n"); for (int i = 0; i < data_size; i++) { printf("%.2f\t\t%.2f\n", input[i], output[i]); } return 0; } ``` 注意事项: 1. 窗口大小(window_size)必须为奇数,以确保对称性。 2. 多项式阶数(poly_order)应小于窗口大小,否则会导致数值不稳定。 3. 边界处理采用简单镜像法,可根据需求修改为其他边界处理方式。 [2025-05-18 23:09:12 | AI写代码神器 | 1014点数解答]

相关提问