酷代码 AI
菜单
全部AI  /  热门  /  AI写代码神器
服务商

就要用transformer实现回归预测

要使用Transformer模型实现回归预测,您可以按照以下步骤进行: 1. 导入必要的库和模块: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torch.nn.utils.rnn import pad_sequence ``` 2. 创建自定义的数据集类,继承自`torch.utils.data.Dataset`类,用于加载和处理数据: ```python class RegressionDataset(Dataset): def __init__(self, features, targets): self.features = features self.targets = targets def __len__(self): return len(self.features) def __getitem__(self, idx): feature = torch.Tensor(self.features[idx]) target = torch.Tensor([self.targets[idx]]) return feature, target ``` 3. 创建Transformer模型类,并定义其结构和前向传播方法: ```python class TransformerRegressor(nn.Module): def __init__(self, input_dim, output_dim, seq_length, num_layers, hidden_dim, num_heads, dropout): super(TransformerRegressor, self).__init__() self.embedding = nn.Linear(input_dim, hidden_dim) self.transformer = nn.TransformerEncoder( nn.TransformerEncoderLayer(hidden_dim, num_heads, dim_feedforward=hidden_dim, dropout=dropout), num_layers ) self.fc = nn.Linear(seq_length * hidden_dim, output_dim) def forward(self, x): x = self.embedding(x) x = self.transformer(x) x = x.flatten(1) x = self.fc(x) return x ``` 4. 定义训练流程和超参数: ```python # 定义超参数 input_dim = 10 output_dim = 1 seq_length = 5 num_layers = 2 hidden_dim = 32 num_heads = 4 dropout = 0.1 # 创建模型实例 model = TransformerRegressor(input_dim, output_dim, seq_length, num_layers, hidden_dim, num_heads, dropout) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 定义批量大小和训练迭代次数 batch_size = 32 num_epochs = 10 ``` 5. 加载数据并进行训练: ```python # 创建数据集实例 dataset = RegressionDataset(features, targets) # 创建数据加载器 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): running_loss = 0.0 for batch_inputs, batch_targets in dataloader: optimizer.zero_grad() outputs = model(batch_inputs) loss = criterion(outputs, batch_targets) loss.backward() optimizer.step() running_loss += loss.item() average_loss = running_loss / len(dataloader) print(f"Epoch {epoch+1}/{num_epochs}, Loss: {average_loss:.4f}") ``` 以上代码仅提供了一个基本的框架,需要根据您的数据集和具体需求进行适当的修改和调整。 [2024-11-12 22:32:10 | AI写代码神器 | 1800点数解答]

相关提问