这是一个优化问题,需要使用数学建模和编程来解决。以下是用 Python 编写的解决这个问题的代码示例: ```python import pulp # 定义问题 prob = pulp.LpProblem("Refinery_Problem", pulp.LpMaximize) # 定义变量 # 表示每种原油加工成每种汽油的桶数 a_to_1 = pulp.LpVariable('a_to_1', lowBound=0) a_to_2 = pulp.LpVariable('a_to_2', lowBound=0) a_to_3 = pulp.LpVariable('a_to_3', lowBound=0) b_to_1 = pulp.LpVariable('b_to_1', lowBound=0) b_to_2 = pulp.LpVariable('b_to_2', lowBound=0) b_to_3 = pulp.LpVariable('b_to_3', lowBound=0) c_to_1 = pulp.LpVariable('c_to_1', lowBound=0) c_to_2 = pulp.LpVariable('c_to_2', lowBound=0) c_to_3 = pulp.LpVariable('c_to_3', lowBound=0) # 表示每种汽油的广告投入 ad_1 = pulp.LpVariable('ad_1', lowBound=0) ad_2 = pulp.LpVariable('ad_2', lowBound=0) ad_3 = pulp.LpVariable('ad_3', lowBound=0) # 约束条件 # 加工量约束 prob += a_to_1 + a_to_2 + a_to_3 <= 5000 prob += b_to_1 + b_to_2 + b_to_3 <= 5000 prob += c_to_1 + c_to_2 + c_to_3 <= 5000 # 总加工量约束 prob += a_to_1 + b_to_1 + c_to_1 + a_to_2 + b_to_2 + c_to_2 + a_to_3 + b_to_3 + c_to_3 <= 14000 # 辛烷值约束 prob += 12 * a_to_1 + 6 * b_to_1 + 8 * c_to_1 >= 10 * (a_to_1 + b_to_1 + c_to_1) prob += 12 * a_to_2 + 6 * b_to_2 + 8 * c_to_2 >= 8 * (a_to_2 + b_to_2 + c_to_2) prob += 12 * a_to_3 + 6 * b_to_3 + 8 * c_to_3 >= 6 * (a_to_3 + b_to_3 + c_to_3) # 硫含量约束 prob += 0.5 * a_to_1 + 2.0 * b_to_1 + 3.0 * c_to_1 <= 1.0 * (a_to_1 + b_to_1 + c_to_1) prob += 0.5 * a_to_2 + 2.0 * b_to_2 + 3.0 * c_to_2 <= 2.0 * (a_to_2 + b_to_2 + c_to_2) prob += 0.5 * a_to_3 + 2.0 * b_to_3 + 3.0 * c_to_3 <= 1.0 * (a_to_3 + b_to_3 + c_to_3) # 需求量约束 prob += a_to_1 + b_to_1 + c_to_1 + 10 * ad_1 <= 3000 prob += a_to_2 + b_to_2 + c_to_2 + 10 * ad_2 <= 2000 prob += a_to_3 + b_to_3 + c_to_3 + 10 * ad_3 <= 1000 # 广告投入约束 prob += ad_1 + ad_2 + ad_3 <= 800 # 目标函数 # 利润 = 销售收入 - 买入成本 - 加工成本 - 广告成本 prob += (70 * (a_to_1 + b_to_1 + c_to_1 + 10 * ad_1) + 60 * (a_to_2 + b_to_2 + c_to_2 + 10 * ad_2) + 50 * (a_to_3 + b_to_3 + c_to_3 + 10 * ad_3)) - (45 * (a_to_1 + a_to_2 + a_to_3) + 35 * (b_to_1 + b_to_2 + b_to_3) + 25 * (c_to_1 + c_to_2 + c_to_3)) - 4 * (a_to_1 + b_to_1 + c_to_1 + a_to_2 + b_to_2 + c_to_2 + a_to_3 + b_to_3 + c_to_3) - (ad_1 + ad_2 + ad_3) # 求解问题 prob.solve() # 输出结果 print("Status:", pulp.LpStatus[prob.status]) for v in prob.variables(): print(v.name, "=", v.varValue) print("Optimal profit =", pulp.value(prob.objective)) ``` 需要注意的逻辑点: 1. 确保变量的定义和约束条件的设置准确反映问题的实际情况。 2. 注意目标函数的构建,要完整涵盖所有相关的成本和收入。 3. 在求解后,要对结果进行合理性检查,比如加工量是否为非负数等。 [2024-11-28 20:23:19 | AI写代码神器 | 1289点数解答]