酷代码 AI
菜单
全部AI  /  热门  /  AI写代码神器
服务商

请在matlab上实现qam与ask、fsk的误码率对比分析仿真图和功率谱密度对比分析仿真图,请给我完整的代码

首先,我们需要实现QAM、ASK和FSK调制和解调的函数。然后,我们将使用这些函数进行误码率和功率谱密度的仿真分析。以下是完整的MATLAB代码: ```matlab % 参数设置 N = 1000; % 符号数 M = 16; % QAM调制阶数 fs = 1000; % 采样频率 fc = 200; % 载波频率 T = 1/fs; % 采样周期 t = (0:N-1)*T; % 时间向量 % 生成随机比特序列 data = randi([0 M-1], N, 1); % QAM调制 qam_modulated = qammod(data, M); % ASK调制 ask_modulated = askmod(data, M); % FSK调制 fsk_modulated = fskmod(data, M); % 添加噪声 noise_power = 0.01; % 噪声功率 qam_received = awgn(qam_modulated, noise_power); ask_received = awgn(ask_modulated, noise_power); fsk_received = awgn(fsk_modulated, noise_power); % QAM解调 qam_demodulated = qamdemod(qam_received, M); % ASK解调 ask_demodulated = askdemod(ask_received, M); % FSK解调 fsk_demodulated = fskdemod(fsk_received, M); % 计算误码率 BER_qam = sum(data ~= qam_demodulated)/N; BER_ask = sum(data ~= ask_demodulated)/N; BER_fsk = sum(data ~= fsk_demodulated)/N; % 绘制误码率对比图 figure; semilogy([BER_qam, BER_ask, BER_fsk], 'o-'); xticks({1, 2, 3}, {'QAM', 'ASK', 'FSK'}); ylabel('误码率'); title('误码率对比分析'); grid on; % 计算功率谱密度 [Pxx_qam, f] = periodogram(qam_modulated, [], [], fs); [Pxx_ask, f] = periodogram(ask_modulated, [], [], fs); [Pxx_fsk, f] = periodogram(fsk_modulated, [], [], fs); % 绘制功率谱密度对比图 figure; plot(f, 10*log10(Pxx_qam), 'r', f, 10*log10(Pxx_ask), 'g', f, 10*log10(Pxx_fsk), 'b'); xlabel('频率 (Hz)'); ylabel('功率谱密度 (dB/Hz)'); legend('QAM', 'ASK', 'FSK'); title('功率谱密度对比分析'); grid on; ``` 注意:在运行此代码之前,请确保已经安装了MATLAB的信号处理工具箱。您可能需要根据您的需求调整参数设置。 [2024-08-30 20:54:34 | AI写代码神器 | 775点数解答]

相关提问