# 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/777d04dc22364384a12890c748682c80/employee_information.xlsx") # 设置基准日期为2023年12月31日 base_date = pd.timestamp('2023-12-31') # 计算每个入职日期与基准日期之间的天数差异,并创建一个新列'入职天数' df['入职天数'] = (base_date - pd).dt.days # .dt.days 是一个属性,用于获取日期时间对象中的天数部分。 # 查看结果 show_table(df.head())


您的代码存在一些错误。以下是修正后的代码: ```python import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/777d04dc22364384a12890c748682c80/employee_information.xlsx") # 设置基准日期为 2023 年 12 月 31 日 base_date = pd.Timestamp('2023-12-31') # 计算每个入职日期与基准日期之间的天数差异,并创建一个新列'入职天数' df['入职天数'] = (base_date - df['入职日期']).dt.days # 这里应该是 df['入职日期'] # 查看结果 print(df.head()) ``` 请确保您的 Excel 文件中的列名为`入职日期`,并且文件的链接是有效的。在 Python 中通常使用`print()`函数来输出内容,而不是`show_table()`函数,除非您已经自定义了这个函数。 [2024-10-26 15:40:13 | AI写代码神器 | 248点数解答]
相关提问
- # 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/777d04dc22364384a12890c748682c80/employee_information.xlsx") # 设置基准日期为2023年12月31日 base_date = pd.timestamp('2023-12-31') # 计算每个入职日期与基准日期之间的天数差异,并创建一个新列'入职天数' df['入职天数'] = (base_date - pd).dt.days # .dt.days 是一个属性,用于获取日期时间对象中的天数部分。 # 查看结果 show_table(df.head())(248点数解答 | 2024-10-26 15:40:13)131
- # 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/525839b97fa94429ac26bf57a798accc/order_datas.xlsx") # 添加年份列 df['年份'] = pd.to_datetime(df['订单日期']).dt.year # 从订单日期提取年份,并创建“年份”列 # 计算销售金额 df['销售金额'] = ___df['销售单价'] * df['销售数量']__ # 计算每个订单的销售金额 = 销售单价 * 销售数量 # 按年份分组 grouped = df.groupby('年份') # 将数据按“年份”列进行分组,便于逐年分析 # 遍历每个年份,计算相关指标 for year, group in grouped: # 遍历每个年份的分组数据 total_order_count = __group.shape[0]_ # 计算该年份的总订单数量(行数) tota(701点数解答 | 2024-11-10 14:29:10)178
- import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/525839b97fa94429ac26bf57a798accc/order_datas.xlsx") # 添加年份列 df['年份'] = pd.to_datetime(df['订单日期']).dt.year # 从订单日期提取年份,并创建“年份”列 # 计算销售金额 df['销售金额'] = ___count*amount__ # 计算每个订单的销售金额 = 销售单价 * 销售数量 # 按年份分组 grouped = df.groupby('年份') # 将数据按“年份”列进行分组,便于逐年分析 # 遍历每个年份,计算相关指标 for year, group in grouped: # 遍历每个年份的分组数据 total_order_count = __a_ # 计算该年份的总订单数量(行数) total_order_amount =___b_ # 计算该年份的(260点数解答 | 2024-11-10 14:26:05)164
- import numpy as np import pandas as pd import matplotlib.pyplot as plt # 读取教学账目数据 teaching_df = pd.read_excel('教学.xlsx') # 读取后勤账目数据 logistics_df = pd.read_excel('后勤.xlsx') # 读取行政账目数据 administrative_df = pd.read_excel('行政.xlsx') # 将各表格的取得日期列转换为日期时间类型,并提取年份作为新列 teaching_df['年份'] = pd.to_datetime(teaching_df['取得日期'], format='%y-%m-%d').dt.year logistics_df['年份'] = pd.to_datetime(logistics_df['取得日期'], format='%y-%m-%d').dt.year administrative_df['年份'] = pd.to_datetime(administrative_df['取得日期'], fo(69点数解答 | 2024-10-31 17:39:14)199
- # 预处理 def load_and_preprocess(file_path): df = pd.read_excel(file_path, engine='openpyxl') df = df.rename(columns={ '评价内容': 'comment', '星级': 'rating' }) # 删除未评论评价以及评论为空的记录 df = df.remove('此用户没有填写评价。') df = df.remove('此用户未及时填写评价内容') df = df.remove('此用户未填写评价内容') df = df.remove('该用户未评价,系统默认好评') df = df.dropna(subset=['comment']) # 去除非文字字符(保留中文、英文、数字) df['comment'] = df['comment'].apply(lambda x: re.sub(r'[^\w\u4e00-\u9fff]', '', (635点数解答 | 2025-06-25 15:46:50)59
- # 定义一个函数,根据入职天数返回工龄分类 def classify_service(days): if days < 90: return '试用期' elif days < 365: return '1年以内' elif days < 365 * 3: return '1-3年' elif days < 365 * 5: return '3-5年' elif days < 365 * 10: return '5-10年' else: return '10年以上' # 应用函数,创建新列'工龄分类' df['工龄分类'] = ____ # 创建一个透视表,其中行标签是“工龄分类”,列标签是“层级”,计算每个工龄分类和层级的员工数量,缺失值填充为0。 df_层级 = ____ # 展示结果 show_table(df_层级)(123点数解答 | 2024-10-26 15:54:47)235
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)144
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)96
- import numpy as np import math import xlrd #读excel数据用 from operator import itemgetter #排序用 import pandas as pd import random import matplotlib.pyplot as plt #*******************************读取数据************************************* # 读取excel数据,储存用户数据,出发点编号为0,用户1的编号为1,用户120的编号为120 data = pd.read_excel('data.xlsx', engine='openpyxl') print(data) # 获取节点坐标和需求 # 假设excel文件的第一列是x坐标,第二列是y坐标,第三列是需求 x = data.iloc[:, 0].tolist() # 获取所有行的第一列数据 y = data.iloc[:, 1].tolist() # 获取所有行的第二列数据 demands(2729点数解答 | 2024-11-25 15:32:50)164
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)302
- 读入数据文件 data.xlsx,实现以下功能: # 数据做字符串处理dtype=str df = pd.read_excel(r'd:\data.xlsx', dtype=str) 1、将列名'商品编码'改为'药品编码',将列名'商品名称'改为'药品名称' (rename()方法实现重新标记行索引或列名,通常使用原索引与新索引(原列名与新列名)组成的字典作为参数。 例如:df=df.rename(columns={'name':'姓名','class':'班级'})) 2、对缺失数据做删除处理(查询哪些字段和记录有空值,并显示社保卡号为空值的记录,并删除有空值的记录) 3、将'销售数量'的数据类型转换为整型'int',将'应收金额'和'实收金额'的数据类型转换为浮点型'float' 4、将'购药时间'截取前面的日期字符串,并将该字段转化为时间类型 (截取字符串可以使用代码:df['购药时间'] = df['购药时间'].map(lambda x: x.split()[0])) 5、删除‘销售数量’小于等于0的数据。(查看数据框信息,看看删除后记录的改变) 6(168点数解答 | 2025-04-17 16:51:27)148
- from kivy.app import app from kivy.uix.button import button from kivy.uix.boxlayout import boxlayout from kivy.uix.filechooser import filechooserlistview from kivy.uix.popup import popup from kivy.uix.label import label from kivy.uix.screenmanager import screenmanager, screen from kivy.core.window import window from kivy.uix.treeview import treeview, treeviewlabel from unitypy import assetsmanager from unitypy.exceptions import unitypyerror import os from pil import image import time class file(262点数解答 | 2024-12-01 17:07:07)196