class loaddata(dataset): def __init__(self, csv_file): # 读取数据 data = pd.read_csv(csv_file, parse_dates=['timestamp'], index_col='timestamp', dayfirst=true) self.data = self.prepare_daily_samples(data['household 200']) # 处理缺失值和异常值 self.data = self.handle_missing_and_outliers(self.data) # 数据最大值归一化处理 self.scaler = minmaxscaler() self.data = self.scaler.fit_transform(self.data.reshape(-1, self.data.shape[-1])).reshape(self


请问您是希望对这段代码进行解释、修改、补充,还是基于这段代码为您提供相关的示例或者解答一些关于它的疑问呢? [2024-11-09 10:50:56 | AI写代码神器 | 34点数解答]
相关提问
- class loaddata(dataset): def __init__(self, csv_file): # 读取数据 data = pd.read_csv(csv_file, parse_dates=['timestamp'], index_col='timestamp', dayfirst=true) self.data = self.prepare_daily_samples(data['household 200']) # 处理缺失值和异常值 self.data = self.handle_missing_and_outliers(self.data) # 数据最大值归一化处理 self.scaler = minmaxscaler() self.data = self.scaler.fit_transform(self.data.reshape(-1, self.data.shape[-1])).reshape(self(34点数解答 | 2024-11-09 10:50:56)207
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(110点数解答 | 2025-01-02 23:42:09)157
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:11)152
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:12)163
- 只修改g_best和p_best这两行代码import random class point(object): def __init__(self, x, v): self.x_list = [x] self.v_list = [v] self.fit_list = [] class pso(object): def __init__(self): # 学习因子 self.c1 = 2.0 self.c2 = 2.0 # 种群数量 self.m = 5 # 惯性因子 self.w = 0.5 # 迭代次数 self.iter_num = 100 # 定义域 self.x_bound = (0, 31) self.group = self._init_x_list() # 得分函数 @staticmetho(298点数解答 | 2024-10-29 21:10:07)176
- import numpy as np import pandas as pd import matplotlib.pyplot as plt # 读取教学账目数据 teaching_df = pd.read_excel('教学.xlsx') # 读取后勤账目数据 logistics_df = pd.read_excel('后勤.xlsx') # 读取行政账目数据 administrative_df = pd.read_excel('行政.xlsx') # 将各表格的取得日期列转换为日期时间类型,并提取年份作为新列 teaching_df['年份'] = pd.to_datetime(teaching_df['取得日期'], format='%y-%m-%d').dt.year logistics_df['年份'] = pd.to_datetime(logistics_df['取得日期'], format='%y-%m-%d').dt.year administrative_df['年份'] = pd.to_datetime(administrative_df['取得日期'], fo(69点数解答 | 2024-10-31 17:39:14)199
- class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(474点数解答 | 2024-12-01 20:47:57)198
- class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(123点数解答 | 2024-12-01 20:51:20)245
- import socket import threading import tkinter as tk from tkinter import scrolledtext, messagebox, simpledialog, filedialog import traceback class chatclient: def __init__(self, root): self.root = root self.root.title("pytalk") self.root.geometry("500x600") self.sock = none self.main_menu() def main_menu(self): for widget in self.root.winfo_children(): widget.destroy() self.label = tk.label(self.root, text="欢迎来到pytalk(1469点数解答 | 2024-10-30 13:14:13)200
- mainwindow.py class mainwindow(qwidget): def __init__(self): super(mainwindow, self).__init__() self.setup_ui() def setup_ui(self): self.setwindowtitle("图书列表") self.resize(800, 600) # 创建表格控件 self.table_widget = qtwidgets.qtablewidget(self) self.table_widget.setgeometry(qtcore.qrect(0, 100, 800, 500)) # 设置列数和表头(90点数解答 | 2024-12-03 20:57:34)157
- # 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/777d04dc22364384a12890c748682c80/employee_information.xlsx") # 设置基准日期为2023年12月31日 base_date = pd.timestamp('2023-12-31') # 计算每个入职日期与基准日期之间的天数差异,并创建一个新列'入职天数' df['入职天数'] = (base_date - pd).dt.days # .dt.days 是一个属性,用于获取日期时间对象中的天数部分。 # 查看结果 show_table(df.head())(248点数解答 | 2024-10-26 15:40:13)131
- def predict(self, pixel_values): batch_size = pixel_values.shape[0] input_ids = np.zeros((batch_size, 1), dtype='int32') attention_mask = np.ones(input_ids.shape, dtype='int32') out_encoder = self.recognition_encoder_model.infer([pixel_values],[(batch_size,3,224,560)])[0][:batch_size*126*1024].reshape(batch_size,126,1024) past_key_values = none stop = false unfinished_sequences = np.ones(1, dtype='int32') cycles = 0 while no(1105点数解答 | 2024-08-01 16:59:13)193