def predict(self, pixel_values): batch_size = pixel_values.shape[0] input_ids = np.zeros((batch_size, 1), dtype='int32') attention_mask = np.ones(input_ids.shape, dtype='int32') out_encoder = self.recognition_encoder_model.infer([pixel_values],[(batch_size,3,224,560)])[0][:batch_size*126*1024].reshape(batch_size,126,1024) past_key_values = none stop = false unfinished_sequences = np.ones(1, dtype='int32') cycles = 0 while no


While the provided code snippet seems to be incomplete, it looks like it is part of a function or method for making predictions using a neural network model. Here is an attempt to complete and enhance the code snippet based on the context: ```python def predict(self, pixel_values): batch_size = pixel_values.shape[0] input_ids = np.zeros((batch_size, 1), dtype='int32') attention_mask = np.ones(input_ids.shape, dtype='int32') out_encoder = self.recognition_encoder_model.infer([pixel_values], [(batch_size, 3, 224, 560)])[0][:batch_size*126*1024].reshape(batch_size, 126, 1024) past_key_values = None stop = False unfinished_sequences = np.ones(1, dtype='int32') cycles = 0 while not stop: # Incomplete part of the code for making predictions goes here # Add your prediction logic here cycles += 1 if cycles >= MAX_CYCLES: stop = True # Return the predicted output or any relevant data ``` In the completed code snippet: - I added a `while` loop that runs until a condition is met (specified by `stop` variable). - I included a placeholder for the prediction logic that needs to be implemented inside the `while` loop. - The loop will iterate until the `stop` condition is met, which can be set based on certain criteria or a maximum number of cycles (to avoid infinite loops). - You can complete the code by adding the necessary prediction logic inside the loop. Make sure to add the missing part of the code for predicting the output based on the encoder output and any other relevant information you have. [2024-08-01 16:59:13 | AI写代码神器 | 1105点数解答]
- def predict(self, pixel_values): batch_size = pixel_values.shape[0] input_ids = np.zeros((batch_size, 1), dtype='int32') attention_mask = np.ones(input_ids.shape, dtype='int32') out_encoder = self.recognition_encoder_model.infer([pixel_values],[(batch_size,3,224,560)])[0][:batch_size*126*1024].reshape(batch_size,126,1024) past_key_values = none stop = false unfinished_sequences = np.ones(1, dtype='int32') cycles = 0 while no(1105点数解答 | 2024-08-01 16:59:13)193
- class loaddata(dataset): def __init__(self, csv_file): # 读取数据 data = pd.read_csv(csv_file, parse_dates=['timestamp'], index_col='timestamp', dayfirst=true) self.data = self.prepare_daily_samples(data['household 200']) # 处理缺失值和异常值 self.data = self.handle_missing_and_outliers(self.data) # 数据最大值归一化处理 self.scaler = minmaxscaler() self.data = self.scaler.fit_transform(self.data.reshape(-1, self.data.shape[-1])).reshape(self(34点数解答 | 2024-11-09 10:50:56)206
- 只修改g_best和p_best这两行代码import random class point(object): def __init__(self, x, v): self.x_list = [x] self.v_list = [v] self.fit_list = [] class pso(object): def __init__(self): # 学习因子 self.c1 = 2.0 self.c2 = 2.0 # 种群数量 self.m = 5 # 惯性因子 self.w = 0.5 # 迭代次数 self.iter_num = 100 # 定义域 self.x_bound = (0, 31) self.group = self._init_x_list() # 得分函数 @staticmetho(298点数解答 | 2024-10-29 21:10:07)175
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(110点数解答 | 2025-01-02 23:42:09)155
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:11)152
- 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:12)161
- import socket import threading import tkinter as tk from tkinter import scrolledtext, messagebox, simpledialog, filedialog import traceback class chatclient: def __init__(self, root): self.root = root self.root.title("pytalk") self.root.geometry("500x600") self.sock = none self.main_menu() def main_menu(self): for widget in self.root.winfo_children(): widget.destroy() self.label = tk.label(self.root, text="欢迎来到pytalk(1469点数解答 | 2024-10-30 13:14:13)198
- class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(474点数解答 | 2024-12-01 20:47:57)198
- class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(123点数解答 | 2024-12-01 20:51:20)244
- 输入字符串数组words,每个字符串中间有且仅有一个空格,输入字符串prefix。输出在words中以prefix为前缀的数量。 class prefixtree: def __init__(self): self.table = [0] * 26 self.next = none def insert(self, s): current = self for ch in s: index = ord(ch) - ord('a') current.table[index] += 1 if current.next is none: current.next = prefixtree() current = current.next def count(self, s): current = self total_count = 0(259点数解答 | 2024-10-26 14:44:39)176
- mainwindow.py class mainwindow(qwidget): def __init__(self): super(mainwindow, self).__init__() self.setup_ui() def setup_ui(self): self.setwindowtitle("图书列表") self.resize(800, 600) # 创建表格控件 self.table_widget = qtwidgets.qtablewidget(self) self.table_widget.setgeometry(qtcore.qrect(0, 100, 800, 500)) # 设置列数和表头(90点数解答 | 2024-12-03 20:57:34)156
- import numpy as np a=np.zeros(10) a[4]=1 b=np.append(a,2) print(b) c=np.array.random.randint(0,100,20) print(c) # d=np.where((c>=60 | c==0),1,c) print(np.where((c>=60 | c==0),1,c)) #n1=np.zeros(10)(286点数解答 | 2025-03-06 20:23:41)149