优化代码,注释显得是一次性完成而非优化import numpy as np import time import random # 假设的车辆容量 CAPACITY = 200 # # 节点索引、横坐标、纵坐标、需求量 nodes_data = [ [1, 406, 126, 0.97], [2, 386, 126, 0.60], [3, 366, 126, 0.21], random.seed(42) for i in range(6, 101): x = random.randint(0, 400) y = random.randint(0, 200) demand = random.uniform(0.1, 1.0) nodes_data.append([i, x, y, demand]) # 提取节点索引、坐标和需求量 node_indices = [data[0] for data in nodes_data] x_coords = {data


```python import numpy as np import random # 假设的车辆容量 CAPACITY = 200 # 节点索引、横坐标、纵坐标、需求量 nodes_data = [ [1, 406, 126, 0.97], [2, 386, 126, 0.60], [3, 366, 126, 0.21] ] random.seed(42) for i in range(6, 101): x = random.randint(0, 400) y = random.randint(0, 200) demand = random.uniform(0.1, 1.0) nodes_data.append([i, x, y, demand]) # 生成节点列表(包含仓库节点0和客户节点1 - 100) nodes = list(range(101)) # 提取节点索引、坐标和需求量 x_coords = {i: 0 for i in nodes} y_coords = {i: 0 for i in nodes} demands = {i: 0 for i in nodes} for data in nodes_data: index = data[0] x_coords[index] = data[1] y_coords[index] = data[2] demands[index] = data[3] # 计算距离矩阵 def calculate_distance_matrix(nodes): n = len(nodes) distance_matrix = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: dx = x_coords[nodes[i]] - x_coords[nodes[j]] dy = y_coords[nodes[i]] - y_coords[nodes[j]] distance_matrix[i, j] = np.sqrt(dx2 + dy2) return distance_matrix distance_matrix = calculate_distance_matrix(nodes) # 1. Clarke - Wright算法 def clarke_wright(): savings = [] for i in range(1, len(nodes)): for j in range(i + 1, len(nodes)): saving = distance_matrix[0, i] + distance_matrix[0, j] - distance_matrix[i, j] savings.append((-saving, i, j)) savings.sort() routes = [[i] for i in range(1, len(nodes))] for _, i, j in savings: for ri in routes: if i in ri: break for rj in routes: if j in rj: break if ri is rj: continue new_route_demand = sum(demands[node] for node in ri) + sum(demands[node] for node in rj) if new_route_demand <= CAPACITY: merged_route = ri + rj routes.remove(ri) routes.remove(rj) routes.append(merged_route) final_routes = [[0] + route + [0] for route in routes if route] return final_routes # 2. 遗传算法 def genetic_algorithm(): population_size = 50 num_generations = 100 mutation_rate = 0.1 def generate_valid_route(): unvisited = list(range(1, len(nodes))) random.shuffle(unvisited) routes = [] while unvisited: route = [0] current_demand = 0 while unvisited and current_demand + demands[unvisited[0]] <= CAPACITY: node = unvisited.pop(0) route.append(node) current_demand += demands[node] route.append(0) routes.append(route) return routes def fitness(route): total_distance = 0 for r in route: for i in range(len(r) - 1): total_distance += distance_matrix[r[i], r[i + 1]] return 1 / total_distance def crossover(parent1, parent2): child = [] for route1, route2 in zip(parent1, parent2): common_nodes = set(route1).intersection(set(route2)) new_route = [0] + list(common_nodes) + [0] remaining_nodes = set(route1 + route2) - set(new_route) current_demand = sum(demands[node] for node in new_route) while remaining_nodes: candidate = random.choice(list(remaining_nodes)) if current_demand + demands[candidate] <= CAPACITY: new_route.insert(-1, candidate) remaining_nodes.remove(candidate) current_demand += demands[candidate] else: break child.append(new_route) return child def mutate(route): if random.random() < mutation_rate: for r in route: if len(r) > 3: idx1, idx2 = random.sample(range(1, len(r) - 1), 2) r[idx1], r[idx2] = r[idx2], r[idx1] return route population = [generate_valid_route() for _ in range(population_size)] for _ in range(num_generations): new_population = [] for _ in range(population_size // 2): parents = random.sample(population, 2) child1 = crossover(parents[0], parents[1]) child2 = crossover(parents[1], parents[0]) child1 = mutate(child1) child2 = mutate(child2) new_population.extend([child1, child2]) population = sorted(new_population, key=lambda x: fitness(x), reverse=True)[:population_size] best_route = max(population, key=lambda x: fitness(x)) return best_route ``` 额外需要注意的逻辑点 1. 在Clarke - Wright算法中,合并路线时要确保新路线的需求量不超过车辆容量,避免出现不合理的路线规划。 2. 遗传算法中,生成初始种群时,每条路线的需求量也需要严格控制不超过容量,否则后续的交叉和变异操作可能会产生无效解。 3. 遗传算法中的适应度函数使用了距离的倒数,这样可以使得距离越短的路线适应度越高,但要注意距离为0的情况(虽然在实际中不太可能出现),防止出现除零错误。 [2025-06-11 02:45:18 | AI写代码神器 | 1530点数解答]
- 优化代码,注释显得是一次性完成而非优化import numpy as np import time import random # 假设的车辆容量 CAPACITY = 200 # # 节点索引、横坐标、纵坐标、需求量 nodes_data = [ [1, 406, 126, 0.97], [2, 386, 126, 0.60], [3, 366, 126, 0.21], random.seed(42) for i in range(6, 101): x = random.randint(0, 400) y = random.randint(0, 200) demand = random.uniform(0.1, 1.0) nodes_data.append([i, x, y, demand]) # 提取节点索引、坐标和需求量 node_indices = [data[0] for data in nodes_data] x_coords = {data(1530点数解答 | 2025-06-11 02:45:18)72
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(506点数解答 | 2025-03-23 14:32:14)175
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(116点数解答 | 2025-03-26 22:22:15)204
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(178点数解答 | 2025-03-26 22:26:30)240
- 以下代码生成包含广告成本和销售额的模拟数据,用来分析广告投入与销售额之间的关系。请补全以下代码,完成从数据生成到可视化分析的全过程。代码包含8个空缺(空1至空8),请根据上下文和注释提示填入正确的代码。 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif'] = ['SimHei'] # 生成模拟数据 np.random.seed(123) # 设置随机种子 ad_cost = np.random.uniform(10, 100, 50) # 生成均匀分布数据 sales = 50 + 2.5 * ad_cost + np.random.normal(0, 20, 50) # 生成正态分布噪声 data = pd.______({'Ad_Cost': ad_cost, 'Sales': sales}) # 空1:创建DataFrame print(data) (939点数解答 | 2025-05-26 23:04:07)95
- import numpy as np a=np.zeros(10) a[4]=1 b=np.append(a,2) print(b) c=np.array.random.randint(0,100,20) print(c) # d=np.where((c>=60 | c==0),1,c) print(np.where((c>=60 | c==0),1,c)) #n1=np.zeros(10)(286点数解答 | 2025-03-06 20:23:41)145
- ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D # 设置图形 fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_facecolor('black') fig.patch.set_facecolor('black') # 爱心参数方程 def heart(t): x = 16 * np.sin(t) 3 y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t) return x, y # 生成爱心形状的点 t = np.linspace(0, 2*np.pi, 1000) x, y = heart(t) z = np.(1487点数解答 | 2025-08-07 11:24:56)42
- ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D # 设置图形 fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_facecolor('black') fig.patch.set_facecolor('black') # 爱心参数方程 def heart(t): x = 16 * np.sin(t) 3 y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t) return x, y # 生成爱心形状的点 t = np.linspace(0, 2*np.pi, 1000) x, y = heart(t) z = np.(130点数解答 | 2025-08-29 21:24:33)31
- 使用下列代码创建数据框,完成以下的填空题。 import numpy as np import pandas as pd index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") data = { "age": [18, 30, np.nan, 40, np.nan, 30], "city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen", np.nan, " "], "income": [None, 11, 22,33, np.nan, 55], "sex": [None, "male", "female", "male", np.nan, "male"], "birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"] } (1)使用data为数据,ind(563点数解答 | 2025-04-14 18:30:52)82
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)301
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)92
- import numpy as np import math from datetime import datetime, timedelta from pymoo.core.problem import elementwiseproblem k_legal = 0.0005624701263657791 b=6371 b=7371 phi=30.35 pi=3.1415926 standard_meridian=120 mean1=9.38167 dev1=0.22401 mean2=4816.70238 dev2=164.0126 def calculate_length(phi, delta, omega, b, b): phi_rad = np.radians(phi) delta_rad = np.radians(delta) omega_rad = np.radians(omega) r_prime = b * np.sin(phi_rad - delta_rad) r_double_prime = b * np.cos(phi_(30点数解答 | 2024-08-04 10:23:08)190